La figura de Pitágoras y de la secta de seguidores pitagóricos tiene un papel central, pues eleva a la categoría de elemento primigenio el concepto denúmero, arrastrando a la Geometría al centro de su doctrina -en este momento inicial de la historia de la Matemática aún no existe distinción clara entre Geometría y Aritmética-, y asienta definitivamente el concepto de demostración formal como única vía de establecimiento de la verdad en Geometría.
euclides |
La Geometría es concebida como la parte de la Matemática que trata de las propiedades de las figuras en el plano y en el espacio, y que junto a la Aritmética y el Álgebra y Análisis conforma el conjunto del edificio matemático.
Los conocimientos matemáticos más antiguos llegados hasta nosotros aparecen en relación con fenómenos de dos tipos: socio-económicos y celestes. En este contexto, no es de extrañar que nuestro sistema decimal provenga de los dedos de las manos, lo que relaciona la estructura decimal de nuestro sistema numérico con la realidad.
La geometría no euclidiana es llamada así por su oposición a uno de los postulados del sistema deductivo de Euclides, desarrollado en sus Elementos de Geometría. Se trata del quinto postulado, ya citado arriba, y que formula la imposibilidad de que por un punto exterior a una recta pueda ser trazada más de una paralela a dicha recta.
Gauss |
una alternativa consistente al sistema de Euclides comienza a ser formulada. Lobachevsky y Bolyai optaron por la misma alternativa al citado quinto postulado de Euclides: a través de un punto exterior a una recta dada puede ser dibujada más de una línea que no corte la recta dada. Existen infinito número de líneas que, aunque se aproximen a la recta dada, como se extienden hasta el infinito, nunca se intersectarán. Similarmente, la suma de los ángulos de un triángulo será menos de los 180º de la geometría euclidiana. La consistencia lógica de la alternativa de Lobatchevsky la ha subrayado Poincaré al afirmar que sus proposiciones “no tienen ninguna relación con las de Euclides, pero no están menos lógicamente ligadas unas con otras” .
No hay comentarios:
Publicar un comentario